
AFRL-IF-RS-TR-1999-23
Final Technical Report
February 1999

HYPERVISORS FOR SECURITY AND
ROBUSTNESS

Secure Computing Corporation

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. E286

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Copyright 1998, Secure Computing Corporation.
All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license
under clause at DFARS 252.227-7013 (Nov 95).

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

Wrc
«""•»«■•■D«

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1999-23 has been reviewed and is approved for publication.

Or
APPROVED:

d{/lfuyi<JL

DWAYNEP.ALLAIN
Project Engineer

FOR THE DIRECTOR: *
WARREN H. DEBANY JR., Technical Advisor
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGB, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

HYPERVISORS FOR SECURITY AND ROBUSTNESS

Terrence Mitchem
Kent Larson
Raymond Lu

Brian Loe
Dick O'Brien

Contractor: Secure Computing Corporation
Contract Number: F30602-96-C-0338
Effective Date of Contract: 29 August 1996
Contract Expiration Date: 29 March 1998
Short Title of Work: Kernel Hypervisors

Period of Work Covered: Aug 96 - Mar 98

Principal Investigator: Dick O'Brien
Phone: (612) 628-2765

AFRL Project Engineer:
Phone: (315)330-7796

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored by
Dwayne P. Main, AFRL/IFGB, 525 Brooks Road, Rome, NY
13441-4505.

REPORT DOCUMENTATION PAGE
OMB No. 070*0188

Public reporting bunten for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions. Marching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Sand comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washngton Headquarters Services; Directorate far Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management end Budget, Paperwork Reduction Project {07O4-D188|, Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE

February 1999
3. REPORT TYPE AND DATES COVERED

Final Aug 96 - Mar 98
4. TITLE AND SUBTITLE

HYPERVISORS FOR SECURITY AND ROBUSTNESS

6. AUTHOR(S)

Terrence Mitchum, Kent Larson, Raymond Lu, Brian Loe, and Dick O'Brien

5. FUNDING NUMBERS

C - F30602-96-C-O338
PE - 62301E
PR - E017
TA - 01
WU - 10

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

Secure Computing Corporation
2675 Long Lake Road
RosevilleMN 55113

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAMEI.SI AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington VA 22203-1714

Air Force Research Laboratory/IFGB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT DUMBER

AFRL-IF-RS-TR-1999-23

11. SUPPLEMENTARY NOTES

Air Force Research Laboratory Project Engineer: Dwayne P. Allain/IFGB/(315) 330-2663

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This is the final report for the Hypervisors for Security and Robustness (Kernel Hypervisors) program. It contains a
description of the kernel hypervisor approach that was developed on the program for selectively controlling COTS
components to provide robustness and security. Using the concept of a loadable module, kernel hypervisors were
implemented on a Linux kernel. These kernel hypervisors provide unbypassable security wrappers for application specific
security requirements and can also be used to provide replication services. Kernel hypervisors have a number of potential
applications, including protecting user systems from malicious active content downloaded via a Web browser and wrapping
servers and firewall services for limiting possible compromises.

This report also includes a summary of the results of the performance testing and composability analysis mat was done on lie
program. It concludes with a discussion of lessons learned and open issues.

14. SUBJECT TERMS

Wrappers, Security Wrappers, Kernel Loadable Modules, Computer Security, Application
Security, Browser Security, Linux Security, Hypervisors

15. NUMBER OF PAGES

56
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

UL
Standard Form 2S8 (Rev. 2-89) (EG)
PresnibedbyANSIStd.239.il
Designed iisig Pert orm Pro. WHS/DIOR, Oct B4

Table of Contents

1. OVERVIEW.

1.1 INTRODUCTION 1
1.2 ACCOMPLISHMENTS 1
1.3 DOCUMENT ORGANIZATION 2

2. KERNEL HYPERVISOR APPROACH . j

2.1 ARCHITECTURE OVERVIEW 3
2.2 COMPONENTS OF THE SYSTEM 5

22.7 The Master Hypervisor Framework <j
2.2.2 Client Kernel Hypervisors 8
2.2.3 Kernel Hypervisor Management }Q

2.3 POSSIBLE APPLICATIONS 11
2.3.1 Types of Uses.]j
2.3.2 Specific Applications J2

2.4 SUMMARY 12

3. PERFORMANCE TEST SUMMARY ; 14

3.1 NETSCAPE KERNEL HYPERVISOR TESTS . 14
3.2 REPLICATION KERNEL HYPERVISOR TESTS , 14
3.3 TEST RESULTS 15

4. COMPOSITION ANALYSIS SUMMARY 16

4.1 SPECIFIED SYSTEMS ; \s
4.2 CONCLUSIONS 17

■ 5. LESSONS LEARNED AND FUTURE DIRECTIONS19

5.1 LESSONS LEARNED ..19
5.2 OPEN ISSUES 20
5.3 FUTURE DIRECTIONS 20
5.4 CONCLUSION 22

7. APPENDIX: USER GUIDE FOR KERNEL HYPERVISORS 24

Table of Figures

Figure 1. System Components 3
Figure 2 Linux Loadable Modules 5
Figure 3. Master Hypervisor Functions 6
Figure 4. System Call Processing 7

u

Abstract

This is the final report for the Hypervisors for Security and Robustness (Kernel
Hypervisors) program. It contains a description of the kernel hypervisor approach
that was developed on the program for selectively controlling COTS components to
provide robustness and security. Using the concept of a loadable module, kernel
hypervisors were implemented on a Linux kernel. These kernel hypervisors provide
unbypassable security wrappers for application specific security requirements and
can also be used to provide replication services. Kernel hypervisors have a number
of potential applications, including protecting user systems from malicious active
content downloaded via a Web browser and wrapping servers and firewall services
for limiting possible compromises.

This report also includes a summary of the results of the performance testing and
composability analysis that was done on the program. It concludes with a discussion
of lessons learned and open issues.

Keywords: wrappers, security wrappers, kernel loadable modules, computer security,
application security, browser security, Linux security, hypervisors

iii

1. Overview
This document is the final report for the Hypervisors for Security and Robustness
program sponsored by DARPA's Information Technology Office. It describes the
approach, called kernel hypervisors, developed on the program for selectively
wrapping COTS components to provide robustness and security, and summarizes the
major achievements of the program.

1.1 Introduction
A hypervisor is a layer of software, normally operating directly on a hardware
platform, that implements the same instruction set as that hardware. They have
traditionally been used to implement virtual machines[l]. Kernel hypervisors are a
similar concept, but are implemented on top of an operating system kernel rather than
on top of the hardware. These kernel hypervisors provide a set of "virtual" system
calls for selected system components.

Kernel hypervisors are loadable kernel modules that intercept system calls to perform
pre-call and post-call processing. They can be used to provide an additional layer of
fine-grained security control or to provide replication support. Their key features are
that they can be set up to be unbypassable, since they are in the kernel, and they are
easy to install, requiring no modification to the kernel or to the COTS applications
that they are monitoring.

Kernel hypervisors have a number of potential applications, including protecting user
systems from malicious active content downloaded via a Web browser and wrapping
servers and firewall services for limiting possible compromises.

1.2 Accomplishments
On this program, the following specific accomplishments were achieved.

• A framework was developed based on a master kernel hypervisor, whose job is to
coordinate installation and removal of individual client kernel hypervisors and to
provide a means for management of these clients. The framework allows client
kernel hypervisors to be stacked so that a variety of application specific policies
can be implemented, each by means of its own kernel hypervisor.

• A variety of specific client hypervisors (also called kernel loadable wrappers)
were developed to test and demonstrate the feasibility of the kernel hypervisor
concept Specific wrappers developed were:

1. Netscape browser wrapper: to limit the damage that could be done when a
user, browsing on the Internet, downloaded and executed malicious active
content

2. Apache web server wrapper: to protect the server's data files from
unauthorized modification and to limit the damage that could be done if

the server was taken over by a malicious user.

3. Replication wrapper: to automatically replicate files as they are being
modified in a manner transparent to the applications performing the
modifications.

The Netscape browser and Apache web server client hypervisors are actually
generic wrappers that can be used to isolate an application and its data files in
a separate domain so that the application is protected from other components
of the system and vice versa.

• A kernel hypervisor management component was developed that provides the
ability to dynamically reconfigure the policies that the various client hypervisors
enforce.

• Performance testing was done to measure the impact of the various client
hypervisors on the performance of their associated applications.

• A composability analysis was performed to analyze the security implications of
stacking client hypervisors.

• A conference paper[2] describing the work was presented at the Annual Computer
Security Applications Conference 97 (ACSAC97) and appears in the proceedings
ofthat conference.

• The source code for the kernel hypervisor components developed on this program
has been made available on the web for other researchers. All code was
developed for the Linux operating system.

1.3 Document Organization
The remainder of this document is organized as follows.

• Section 2 describes the kernel hypervisor architecture, presents a high level view
of the system components that were developed and discusses some of the possible
uses of kernel hypervisors.

• Section 3 presents a summary of the results of the performance testing.

• Section 4 describes the composition analysis that was performed on the system.

• Section 5 documents some of the lessons learned on the project and outlines
possible future research directions.

• The References section includes a list of cited and related documentation.

• The Appendix contains the User Guide.

2. Kernel Hypervisor Approach
Section 2.1 presents an overview of the kernel hypervisor architecture that was
developed on the program and includes a brief discussion of the benefits of the
approach and how it relates to other research work. Section 2.2 then provides more
details of the specific system components that were developed. More details of the
implemented system can be found in the Design Report [3]. Section 2.3 documents
some of the possible applications of the kernel hypervisor technology.

2.1 Architecture Overview
The kernel hypervisor architecture is illustrated in Figure 1.

Figure 1. System Components

User

User Space

Kernel

• Master Kernel Hypervisor provides communications and control
• Client Kernel Hypervisors provide application specific monitoring
• Client Kernel Hypervisor Management provides the user interface for

I configuration of client hypervisors

There are three main components:

• The master kernel hypervisor: manages the individual client kernel
hypervisors that are currently loaded and provides a control facility allowing
users to monitor and configure these client hypervisors.

• Specific client kernel hypervisors: provide application specific policy
decision making and enforcement. Each client kernel hypervisor can wrap

one or many applications. User daemons that run in user space can also
be developed to allow the client hypervisors to initiate actions in user
space.

• Client hypervisor management module: provides an interface for
communicating with and configuring the client kernel hypervisors from user
space.

Kernel hypervisors are distinguished by the fact that they consist of loadable kernel
code that is used to wrap specific applications. Other approaches have been used to
provide wrappers for additional security or robustness including:

• Traditional hypervisors that replace the standard hardware interface with an
interface that provides additional capabilities. This approach was used by
Bressoud and Schneider[l] for building a replication hypervisor that
intercepts, buffers, and distributes signals from outside the system.

• Special libraries that include security functionality and that are linked with
an application before it is run. This is the approach taken by SOCKS [4]
where the client links in the SOCKS client library. SOCKS is intended for
use with client/server TCP/IP applications, but the concept of linking in
special libraries can be used for any type of application.

• Wrappers that make use of an operating system's debug functionality. This
. is the approach taken by the Berkeley group[5].

Our approach is most like the last, but it differs in that we place our code directly in the
kernel and do not use the system debug functionality. Loadable kernel hypervisors have
a number of benefits.

• They are unbypassable. Since the wrapper is implemented within the
operating system kernel, malicious code cannot avoid the wrapper by
making direct calls to the operating system as could be done with code
library wrappers. Any such calls will be intercepted and monitored.

• They do not require kernel modifications. All kernel hypervisor code is
implemented as modules that are loadable within the kernel while the
system is running. There are no changes to kernel source code as is
necessary with specialized secure operating systems.

• They are flexible. Kernel hypervisors can be used both to implement a
variety of different types of security policies and to provide replication
functionality. Some of the possible applications are discussed below. A key
feature is that kernel hypervisors can be "stacked", so that modular security
policies can be developed and implemented as needed.

• They are not platform specific. Kernel hypervisors can be used on any
operating system that supports kernel loadable modules that have access to
the system call data structure. This includes Linux, Solaris, and other
modern Unix systems, as well as Windows NT.

• They can be used to wrap COTS software without any modification to the
software (including, e.g., relinking). Kernel hypervisors can monitor the
actions of the COTS software and react in a manner that is transparent to the
COTS application, other than it may be denied access to certain system
resources according to the policy being enforced by the kernel hypervisor.

The goal of kernel hypervisors is to protect against malicious code or to provide
some type of additional functionality. Hence, the operating assumption is that the
user can be trusted. This assumption implies that kernel hypervisors are similar to
virus protection programs in that a user must not specifically disable them. In fact,
kernel hypervisors can be set up so that they cannot be disabled, but they do rely on
proper user administration and use.

2.2 Components of the System
Using the concept of a kernel loadable module, we implemented kernel hypervisors
on a Linux kernel. Linux was chosen as the initial platform because it supports
loadable modules, the source code is free and easily available so the results of our
work will be accessible to other researchers and developers, and it is widely used as a
Web server platform and hence provides a good target for our approach.

As Figure 2 illustrates, Linux provides full support for kernel loadable modules[6].
Three system calls are supported that allow a privileged user to install and remove
loadable modules and to list which modules are currently loaded. Once loaded, the
kernel hypervisors in Linux run within kernel space and have full access to kernel
data structures.

Figure 2 Linux Loadable Modules

Application

Kernel ^^Loadable module^ I mm

Loadable modules operate within kernel space and have access to all kernel data structures.
Loadable modules can be loaded/unloaded without any modifications to the running system.
Commands:

lsmod - list modules currently loaded
insmod moduleName - load the module named moduleName
rmmod moduleName - unload the module named moduleName

The remainder of this section discusses the three major components of our
implemented kernel hypervisor system in more detail.

• The Master Hypervisor Framework
• The Client Kernel Hypervisors
• The Kernel Hypervisor Management.

2.2.1 The Master Hypervisor Framework

A framework has been developed based on a master kernel hypervisor, whose job is
to coordinate installation and removal of individual client kernel hypervisors and to
provide a means for management of these clients. The framework allows client kernel
hypervisors to be stacked so that a variety of application specific policies can be
implemented, each by means of its own kernel hypervisor. The hypervisors run in the
kernel, but since they are loadable modules, they do not require that the kernel be
modified.

Figure 3 illustrates the framework. The master hypervisor is loaded before any other
client kernel hypervisors. A special application programming interface (API) has
been defined that allows client hypervisors to register and unregister themselves with
the master hypervisor and to identify which system calls they need to monitor. The
master hypervisor keeps track of all currently registered client hypervisors and of the
particular system calls that each client hypervisor is monitoring. When a client
hypervisor module is removed via the rmmod call, it is the responsibility of the client
hypervisor to de-register itself with the master hypervisor.

Figure 3. Master Hypervisor Functions

User Commands

_*
Hypervisor Device /dev/hyper

Hypervisor List

Hypervisor
System Call Table

• Maintains hypervisor list

• Maintains hypervisor system call table

• Device driver for /dev/hyper

A special device, /dev/hyper, has been defined for communication between user
space and kernel hypervisors. The master hypervisor acts as the device driver for this
device. The device allows a privileged user to dynamically update the configuration
information for a kernel hypervisor, including updating the security policy that the
hypervisor enforces. It also provides a mechanism that kernel hypervisors can use to
communicate with user space daemons. Such daemons, for example, could be used to
provide additional audit capabilities or replication services.

The master hypervisor provides special wrapper code for use with any system call
that is being monitored. The actual monitoring of system calls is performed by
redirecting the links in the kernel system call table to point to system call wrappers
that the master hypervisor provides. This redirection of links is the only modification
to the kernel that is performed and is done by the master hypervisor only on system
calls being monitored. The wrapper code is invoked when the system call is made
and performs the processing illustrated in Figure 4. Each system call has its own

Figure 4. System Call Processing

Ö initial System Call
0 System Call Stolen -

Preprocessing Checks Made
0 Preprocessing Checks Fail -

Return Failure
0 Preprocessing Checks Pass-

Perform System Call Processing
0 Postprocessing Done
0 Return Result of System Call

Processing and Postprocessing

Kernel

wrapper that follows the algorithm:

• For each client kernel hypervisor monitoring this call, initiate that client's
pre-call processing.

• Call the standard system call processing.
• For each client kernel hypervisor monitoring this call, initiate that client's

post-call processing.
Pre-call and post-call processing is used to enforce the client hypervisor's particular
security policy or to initiate other actions by the client hypervisor. This processing

could include additional auditing of system calls, including call parameters and
results; performing access checks and making access decisions for controlled
resources that the hypervisor is protecting; modifying system call parameters; and
passing information to user daemons.

2.2.2 Client Kernel Hypervisors

Client kernel hypervisors are developed and loaded separately as needed. A single
client kernel hypervisor can be designed to monitor just one specific application or a
number of different applications. Client kernel hypervisors could also be used to
enforce other types of policies independent of any application.

To illustrate the practicality of the kernel hypervisor concept, we prototyped three
client kernel hypervisors: one for wrapping the Netscape browser, one for replicating
files, and one for wrapping the Apache Web Server.

2.2.2.1 Netscape Hypervisor

The goal of the
Netscape hypervisor is
to protect a user,
browsing on the
Internet, from
downloading and
executing malicious
active content that
might damage the
user's system. The
Netscape hypervisor
accomplishes this by
monitoring system calls
made by the browser and enforcing a policy that only allows certain resources to be
accessed. In particular, the set of files that the browser can open for read, and
read/write access is controlled so that the browser effectively operates within its own
limited execution context. While this does not prevent malicious code from
accessing, and possibly damaging, resources within this context, it does limit the
damage that could be done to only these resources.

In the case of the Netscape browser, the context includes the user's .netscape
directory as well as limited access to other libraries needed by the browser to
execute. Most files on the system, however, are not accessible to the browser and so
cannot be damaged. To ensure that applications started from the browser as the result
of a download, e.g. a postscript viewer, are also controlled, the hypervisor keeps
track of all descendants of the browser and enforces the same policy on them as on
the browser.

The security policy that the Netscape hypervisor enforces is stated as a set of rules
identifying which resources the browser is allowed to access and what permissions
the browser has to the resource. If there is no rule that allows access to a resource,

then the hypervisor refuses any requests for access to that resource. The format of the
rules is:

<type> <idemifier> <permissions>

where <type> is either a file, socket, or process

<identifier> is either a file/dir pathname, an IP address, or a process ID

and <permissions> depends on the type.

For our Netscape prototype, only rules for the <file> type are used. For these rules
permissions are:

read, write, read/write, and none.

Certain conventions are used to simplify the statement of the rules. If an <identifier>
is a file directory, then access to all files in that directory and all subdirectories is
governed by the rule for the <identifier>, unless this rule is specifically overridden.
Rules can be overridden by stating another, more specific, rule. For example, if a rule
allows read access to all files and subdirectories of the directory /etc, then you can
prevent users from accessing the file /etc/passwd by including a rule for this file with
a permission of none.

2.2.2.2 Replication Hypervisor
The replication hypervisor is used to transparently replicate a file or set of files. The
objective is to provide a replication facility that allows immediate backup of changes
to a file without having to modify any applications that are making the actual
changes.

The replication hypervisor monitors all system calls that modify files looking for
calls that
modify the set
of files to be
replicated.
When such a
call is
identified, the
hypervisor
caches the
input
parameters and
allows the call
to continue

execution. If execution of the call completes successfully, then the hypervisor sends
the cached input parameters to a replication daemon, operating in user space, that
replays the call with the cached parameters on the copy of the file that it is
maintaining.

Files can be replicated locally or across the network (using NFS) via this method.
Results of our performance testing are documented in the Test Report, CDRL A006.

2.2.2.3 Apache Server Hypervisor
Based on our experience with the Netscape kernel hypervisor, a
hypervisor was
developed that can be
used to isolate any
application in a
compartment from
which its access to files
can be completely
controlled. This generic
security hypervisor,
plus additional
restrictions

generic secuntv

using
developed
replication

Apache
Web

Server
■BjpWffe

^BSSStBSBSiSiySOSff€tw9^^iKit^ti^i^^%^

ll^öeryer.? .••.,■. vj"|,
■ ifÄccessibie
pSFilesvvp

techniques
for the
hypervisor, were used to develop a security hypervisor for the Apache Web Server.

The web server requires two types of protection. First, the server must be restricted
to a subset of the file system so that any attack coming through the server will be
contained. This was accomplished by creating a new hypervisor, hyper_apache.
Hyper_apache provides for the apache server application, httpd, what hyper_ns does
for netscape.

The server's temporary scratch directory and logging directories are configured as
read/write while the html files presented by the server are configured as read only by
hyper_apache.

The second piece of server protection is to isolate the configuration and html files
used by the server from modification by un-authorized individuals. This is
accomplished by a new hypervisor, hyper_cop (for Circle of Protection). Once
installed and configured, hyper_cop restricts access to the files within its circle from
all but certain privileged users. This will prevent a rouge user from overriding the

. system and changing the content of the web site even if they get access to root. The
attacker will be required to know who the privileged user is before changes are
allowed.

This implementation of hyper_cop is sufficient to show proof of concept but some
open issues remain. These are discussed more fully in Section 5.

2.2.3 Kernel Hypervisor Management
The kernel hypervisor management component allows a user to obtain information on
client hypervisors that are currently loaded and to reconfigure them, if needed. (As
noted earlier, hypervisors are loaded and removed through standard Linux system
calls.)

All hypervisor management is done via communication through the /dev/hyper
device. The master hypervisor responds to requests for a list of all currently installed
client hypervisors and their current identifiers. These identifiers are used to direct
requests to specific kernel hypervisors.

The management functions available for the Netscape hypervisor include:

10

• the ability to list the current rules that are being enforced
• the ability to clear the current rule set and load a new one
• the ability to change the log level that the hypervisor uses to determine what

detail of logging it should do.

2.3 Possible Applications
Kernel hypervisors can be used in a variety of ways to enhance the security and
robustness of a system. This section discusses some of the types of uses followed by
some specific applications.

2.3.1 Types of Uses
Auditing: In their simplest form, kernel hypervisors can provide an audit and
monitoring functionality that merely records additional information about the system
resources that an application is accessing. Such audit hypervisors are also useful for
determining what system resources an application accesses during its normal
processing. Since the level of auditing can be dynamically adjusted and since kernel
hypervisors also provide a control mechanism, they could be useful as a component
of an intrusion/detection/response system.

Fine-grained access control: The most compelling use of kernel hypervisors is to
provide dynamic, fine-grained access control to various system resources such as
files, network sockets and processes. The type of control possible is what
differentiates this method of wrapping applications from standard access control list
methods that perform control based on a user attribute. Kernel hypervisor security
policies can be based on users, but can also be based directly on the application. For
example, the Netscape kernel hypervisor that we implemented only monitored the
Netscape application as well as any other applications started from within Netscape.
Users had additional privileges to access their own .netscape directories, but could
not override the restrictions in the Netscape hypervisor security database. These
restrictions apply even to the root user. (In fact, an additional restriction imposed by
the Netscape hypervisor was that the root user could not even run the Netscape
browser.)

Label-based access control: While the rule sets described in Section 2.2 can be
used to implement most simple policies, it would also be possible to use kernel
hypervisors to implement more sophisticated label-based policies, such as a
multilevel secure (MLS) policy or a type enforcement policy. To be able to
implement these policies, a kernel hypervisor would need a way to label system
resources. This might be done by creating and maintaining its own list of labeled
names, or by piggybacking the labels on system data structures that have available
space. Because of the flexibility of the kernel hypervisor, these label-based policies
could be applied to only those portions of the system that required labels. And
policies could be quickly changed, if needed, to adapt to the current operating
environment.

Replication: Kernel hypervisors can also be used to provide replication features by
duplicating system calls that modify system resources, such as files. We have

11

investigated one approach for doing this by using a user daemon to replay file access
requests that are intercepted by a kernel hypervisor. The replayed requests effectively
duplicate that portion of the file system that is being monitored.

2.3.2 Specific Applications
Specific applications that kernel hypervisors can be used for include:

• Wrapping web browsers to protect the user from downloaded malicious
active content.
This is described in more detail in the section on the Netscape hypervisor.
The most interesting point is that any applications that are started
automatically from the browser, as well as any plug-ins, are also subject to
the same restrictions that are on the browser. As noted earlier, this limits the
damage that malicious active content can do to only those areas of the
system that the user allows the browser to access.

• Wrapping web servers to protect against malicious attacks.
Kernel hypervisors can be used to ensure that if the web server is overrun
the damage is limited. In particular, it can ensure that files being served by
the web server are not modified inappropriately. Also, because they are
often easy to overrun, CGI scripts are sometimes attacked by malicious
users on the web. In particular, if a CGI script has the ability to connect to
an internal system, then an attacker might be able to compromise this CGI
script to launch an attack. By limiting which ports on an internal system a
CGI script can connect to, a kernel hypervisor can limit the attacker to only
services on those ports.

• Wrapping services and proxies on an application gateway.
Services, like Sendmail, often have unknown bugs that are only discovered
when someone uses them to attack the system on which the service is
running. Once again, kernel hypervisors provide a way of limiting the
damage that such a compromise can cause.

• Adding new security features to a system.
Kernel hypervisors can be used to add security features, such as security
levels, roles, or domains and types, to a system without requiring any
additional modifications to the system. In fact, a special kernel security
hypervisor could be implemented that performs all of the required security
checks for any other kernel hypervisor.

This is only a partial list of the possible security uses of kernel hypervisors. Any
number of applications could benefit from the additional security that they can
provide.

2.4 Summary
Kernel hypervisors are an approach to wrapping applications to provide additional
security that has a number of advantages over other approaches. Because they reside
in the kernel, they cannot be bypassed. Because they are implemented as loadable
modules, they do not require any modification to the kernel. Because they do not

12

require modification to an application, they can be used to dynamically wrap
processes that are started from other processes that have already been wrapped.
Because they can be easily configured, the policy that they enforce can be
dynamically modified as needed. By limiting the amount of damage malicious
software can do, kernel hypervisors provide an approach to protecting one's system
against current and future threats that may still be unknown.

13

3. Performance Test Summary
Since kernel hypervisors perform additional processing on system calls that are
being monitored, the testing goal was to measure how this additional processing
affects the overall performance of the system and the performance of the particular
applications that are being monitored. Performance testing was performed on two
kernel hypervisors: the Netscape hypervisor and the replication hypervisor. This
section summarizes the tests performed and the results of the testing. More detailed
information can be found in the Test Report [7].

3.1 Netscape Kernel Hypervisor Tests
Since each process that is spawned by the Netscape browser is also monitored by the
Netscape hypervisor, we used a shell process that could be spawned from within
Netscape to run our tests. Each test consists of a C program that was run from within
the shell. Times were measured for the following three situations:

1. The Netscape hypervisor is not running and the tests are run from within a
shell. This case determines the baseline times that the other tests can be
compared against.

2. The Netscape hypervisor is running and the shell is spawned from within
Netscape. In this case we are measuring the full performance impact of the
hypervisor since all monitored system calls made from within the shell will
be checked.

3. The Netscape hypervisor is running and the shell is spawned from outside
Netscape. In this case the Netscape hypervisor checks to determine if the
process has been spawned by Netscape. When it determines that it was not,
it does no further checking. In effect, this case measures the overhead that
running the hypervisor has on the rest of the system.

3.2 Replication Kernel Hypervisor Tests
The replication task increases the processing on the monitored system calls: the path
names and file descriptors are checked and saved, the writing buffers are duplicated,
and communication messages are created and delivered.

The test results are affected largely by the length of file paths, the number of
monitored file paths, the position of a file path in the check list, and the number of
processes running on the system.

The tests repeatedly measured individual system calls and generated average time for
executing the system calls. Times were measured for the following three situations:

1. The system calls access files when neither the replication hypervisor nor the
replication daemon are running. This case determines the baseline times
that the other tests can be compared against.

2. Both the replication hypervisor and the replication daemon are running, and
the system calls access files that are being replicated. This case measures
the full performance impact on system calls when the replication hypervisor
performs all of the processing needed to replicate a file.

14

3. Both the replication hypervisor and the replication daemon are running, and
the system calls access files that are not being replicated. This case
measures the performance impact of merely checking whether a file is being
replicated or not, but not doing any of the additional replication processing.
In effect, this case measures the overhead that running the hypervisor has on
the rest of the system.

3.3 Test Results
The performance testing for both hypervisors looked at two areas:

1. How did the hypervisor affect the performance when the hypervisor
processing was not triggered by the system call? That is, how were the
parts of the system that were not being controlled by the hypervisor
affected.

In this case the only additional processing was that performed by the
hypervisor to determine whether it should invoke its special processing.
For both the Netscape hypervisor and the replication hypervisor, this
overhead was minimal, ranging from no measured overhead to a maximum
overhead of 18 microseconds. This shows that hypervisors do not have an
overly adverse performance impact on the rest of the system.

2. How did the hypervisor affect the performance of system calls, and hence
applications, that were actually being controlled by the hypervisor?

In this case there was a noticeable increase in the system call time. The
increases ranged from 38-58 microseconds for the Netscape hypervisor
and from 17-196 microseconds for the replication hypervisor. In many
cases, the times for a system call being replicated by the replication
hypervisor were close to twice the time of an unreplicated call. This was
to be expected, since, as part of the replication, the hypervisor needed to
make a copy of all incoming system call parameters.

It should be noted, that although there were measurable differences in system call
response time when the hypervisors were running as opposed to when they were not,
these differences were only of the magnitude of 100 microseconds or less and only
for the system calls made by applications actually being monitored. In most cases,
these differences will not be noticeable, and, at any rate, are certainly within the
tolerable range, especially considering the functionality that the hypervisors provide.
For example, we have not noticed any performance penalty from running the
Netscape browser hypervisor.

15

4. Composition Analysis Summary
This section contains a short summary of the composition analysis that was done on
the program. The full set of specifications and documentation of the composition
analysis is in the Formal Specifications report [8].

Just as a software developer can build a complex system from a set of software
modules, composition allows a systems analyst to build specifications for, and reason
about, a complex system from the specifications of its components. While this
suggests a "bottom up" approach to system specification, the "top down" approach,
referred to as refinement, proves to be as useful if not more so. However, whether the
analyst applies composition from the top down or from the bottom up, the analyst is
able to reduce arguments about the properties of an entire, and possibly complex,
system to a set of simpler properties and relatively simple arguments about each of
the components.

In particular, the application of composition to the analysis of a system provides
similar benefits as the modular approach to writing code. Even if the design (and
specification) of one component changes, as long as the properties and interfaces
between that component and the others remain stable, then only the arguments made
about the properties ofthat one component need to be re-verified. In other words, the
assurance arguments for unchanged components become reusable.

4.1 Specified Systems
The composition framework that was used is the one developed on the Composability
for Secure Systems program which is the successor to the framework developed
under the DTOS program. This framework is based on the work of Abadi and
Lamport[9] and of Shankar[10]. The differences between the Composability and
DTOS approaches and that of Abadi and Lamport are described in more detail in the
Composability for Secure Systems Refined Design Report [11] and in the DTOS
Composability Report[12] respectively. For both the Composability for Secure

* Systems program and the DTOS program, the framework has been specified in the
PVS language.

The composability framework is based on a state transition model. Each transition is
a triple of the form (initial state, final state, transition agent). Depending on the
needs of the analysis, the state may represent either the component state or the
system state. The transition agent can represent a variety of concepts, including
particular components, particular operations that a component supports, or threads
that implement a component. Transition agents also can represent agents in the
component's environment that are not part of the component.

Four separate, but related, systems were specified. The four specifications are related
via refinement. The second and third specifications are refinements of the first; the
fourth is a refinement of the second. The systems are:

• no hypervisor loaded into the kernel; that is, just one component: the kernel.
Since this system has just a single component, composability has nothing to
add to the analysis of it. However, the kernel without any hypervisors loaded
into it forms the baseline system from which all of the other systems are

16

built.

• a two component system consisting of the kernel and a single security
hypervisor that monitors write requests loaded into the kernel

• an enhanced two component system consisting of the kernel and a single
security hypervisor that monitors write requests and return parameters

• a multiple component system consisting of the kernel, a master hypervisor
and a set of security hypervisors that monitor write requests. In this
specification, the single kernel hypervisor has been refined into a master
hypervisor and a set of hypervisors each of which have a security policy
defined. It is possible to implement a single hypervisor that would behave
identically to a system composed of the components specified in this case,
but the added complexity of specifying the security policy would make the
task very complex.

In this model, all of the hypervisors are monitoring the same system call: a
write request. The master hypervisor calls all hypervisors monitoring the
given process before forwarding the write request to the kernel. In practice,
the master hypervisor maintains a list of hypervisors monitoring a given
system call. It calls each of the hypervisors monitoring that call, and each
hypervisor in turn determines whether it monitors the given process.

Each specification describes the individual components of the system and the
common state for the composite system. A list of properties satisfied by each
component was derived, and composability theory was used to show that these
properties are satisfied by the composite system.

4.2 Conclusions
Since composability theory says that the properties of a system are just the
conjunction of the component properties, the analysis seems to be trivial. In fact, the
hypotheses placed on a set of components for composability are so weak, that the
composition theorem seems to say almost nothing. However, the final results are not
as trivial as they appear at first glance, and this is often the case with any
mathematical construct which is defined well. The strength of composition comes not
from the composition theorem per se, but from the way in which composition of two
components is defined.

The interesting features of a specification come in the decision of what should be
specified in each component's transitions, and what other transitions each component
can tolerate. In fact, much of the strength of the properties relies on what things one
can reasonably enforce on the environment of a component. The more that one can
enforce on the environment of a component, the more strongly one can state (and
perhaps more easily one can prove) the properties of the component. However, the
counter argument is that specifying too much in the environments of the system
components can specify away all functionality of the composite system (since the
composite consists of only those individual component transactions that satisfy each
of the other component's environment transaction specifications). The goal therefore
is to specify in each component's environment only those things that are needed to
prove the component's properties hold.

17

The first specification represents an operating system that is not protected by a kernel
hypervisor. The final three specifications represent refinements of a sort on that
initial specification. They are not true refinements in the sense that the hypervisors
are enforcing a security policy in addition to the one already enforced by the kernel.
However, this appears to be the most powerful application of composition. While the
code for the kernel itself may be unavailable to the developers of the hypervisors, the
hypervisors are kernel-loadable modules, and thus represent a refinement of the
kernel. Since the code for the kernel may be off limits, the interfaces and properties
of the kernel are both well-defined and stable.

This is an ideal situation for the re-use of the specification of the kernel properties.
We know what they are to begin with. After loading the hypervisors into the kernel,
the properties of composite system are just the conjunction of the properties of the
hypervisors and the kernel. That means that we can layer the desired behavior of the
hypervisors over the properties of the kernel with the assurance that these properties
will also hold.

18

5. Lessons Learned and Future Directions
This section contains a summary of lessons learned, open issues and possible future
directions that the work described in this report could take.

5.1 Lessons Learned
An original goal of the program was to investigate whether kernel loadable modules
could be used to add additional security and robustness to systems with minimal
impact on the system and system applications. The results of the program clearly
demonstrate that this is not only possible, but, in fact, has many advantages over
other approaches for wrapping system components. These advantages include:

• No modifications are required to kernel code.
• No modifications are required to application code and monitored

applications do not need to be recompiled or relinked.
• The wrapper code runs within the kernel and, hence, is much harder to

bypass.

• Application policies can be easily changed or updated in a dynamic manner.
• Wrappers can be easily stacked to enforce more complex policies that

consist of a number of simpler policies.

• The approach can be used on any system that supports kernel loadable
modules.

• The approach can be used to implement a wide variety of security, integrity
and redundancy features. Since access to specific system calls can be
monitored, additional controls on what system calls a user can execute can
be added.

One of the more interesting results of our work is the validation of the concept of a
master kernel hypervisor to control the specific client hypervisors and to provide
communication between user space and specific hypervisors for management. An
alternative approach would be to construct one large loadable module mat contained
all of the functionality of both the master kernel hypervisor and the specific client
hypervisors. This large module approach would be much less flexible, manageable
and maintainable. Hence, proving that the more modular approach used on the
program actually worked is a significant accomplishment.

Another interesting result is the development of a generic kernel hypervisor that can
be used to provide an isolated environment within which an application can execute.
As demonstrated with both the Netscape hypervisor and the Apache Web server
hypervisor, the generic hypervisor is easy to configure for applications with minimal
work. By running the hypervisor in audit mode, the files that the application
normally accesses can be identified and the appropriate configuration file constructed
that allows only the accesses needed by the application.

The hyper_cop hypervisor provides the other most common type of additional access
control needed: controlling the accesses to particular files for all applications and
users on the system. The combination of the generic hypervisor with the hyper_cop
hypervisor provides most of the additional access control that might be desired.

19

There are still some open issues, however, involving the hyper_cop hypervisor.
These are discussed in the next section.

5.2 Open Issues
While the feasibility and usability of kernel hypervisors was shown on the program,
there are a number of issues that arose that remain open and will require additional
research to resolve. The most interesting areas that were not fully addressed on the
program due to limitations on time and funding include:

• Network and process control.
While the kernel hypervisor framework is appropriate for controlling
access to files, network resources and processes, only file access control
was investigated on this program. It remains an open issue as to how well
the approach will work for controlling communications between processes
and for controlling access at the network level (for example, to limit
access to specific IP addresses or to perform additional processing as part
of a network request).

• Platform independence.
While the kernel hypervisor approach should work for any system that
supports kernel loadable modules, it has only been tested on the Linux
operating system. For other Unix systems, like Solaris, that support kernel
loadable modules, it should be a relatively straight forward task to port the
current framework. For a system like Windows NT, that is proprietary
with little kernel documentation, it remains an open issue as to how well
the approach will work. There are unofficial ways to insert code to
intercept system calls on NT that have been documented [13]. However,
whether these methods are sufficient to support the hypervisor framework
is unknown.

• Handling relative path names.
The current hyper_cop prototype is sufficient to show proof of concept but
is weak on protection. Hyper_cop is configured by reading in and storing
a list of filenames to protect, which it checks each time an open() call is
encountered. The filename being opened is checked against the list and
access decision are made. Unfortunately, relying on filename string
comparisons is a very inaccurate way to identify files. To circumvent the
protection, a user simply needs to access the file by a different name than
the name being protected by hyper_cop. This can be accomplished by
many methods including accessing the file through a symbolic link,
through the /proc directory structure or simply by giving a relative path
and name instead of the full name of the file. How difficult it is to
identify and control all such indirect accesses to a file is an open issue.

5.3 Future Directions

The kernel hypervisor concept is extremely flexible and has a variety of possible
applications. This implies that there are a number of possible directions for future
research and development in this area. These include:

20

•

Extending the approach to other platforms.
The first step in doing this is to adapt the technology, which currently runs
only on the Linux operating system, to other popular operating systems, in
particular Sun Solaris and Windows NT.
The Solaris operating system supports a flexible, kernel loadable module
functionality that is more than sufficient to implement the kernel
hypervisor framework. In fact, it has operating system features similar to,
and in some cases more sophisticated than, those provided by Linux and
used on the Kernel Hypervisor program.
While the Kernel Loadable Wrapper architecture for NT would be the
same as for Linux and Solaris, because of the differences in the operating
systems, the NT development would be more difficult. The primary
difficulty arises from the fact that Windows NT is a closed, proprietary
system and Microsoft does not release documentation of some of the
kernel details that would be needed.

Enhancing the capabilities of the hyper_cop hypervisor.
Stronger protection would be accomplished by developing a shell that
works with hyper_cop to provide user authentication. Such a
hypervisor/shell combination would assure only the desired individuals
would have access to the protected files regardless of root access or using
trial and error to identify the privileged user.
More work needs to be done to ensure that the hypervisor can correctly
identify file references that are made via either relative pathnames or
alternate paths.

Developing additional types of hypervisors.
The current set of hypervisors are all focused on file access, audit and
replication. Other areas where hypervisors could be useful and should be
developed include interprocess communication and network access and
audit.

Extending the composition analysis.
The composition framework developed under the DTOS and
Composability For Secure Systems programs was specified in PVS, which
provides an interactive environment for writing specifications and machine
checking formal proofs. Ideally, the specifications done on this program
would have also been specified in PVS, and the properties stated for each
component could have been proved by the theorem checking capability of
PVS. However, time and budget constraints of this program led us to
choose not to specify the components in PVS. As the specifications
become more complex the additional effort to write specifications in PVS
pays off in higher confidence in their correctness, and minor changes to
the specifications allow the analysts to re-run machine proofs according to
existing strategies rather than having to re-prove a theorem by hand.

Protecting additional applications.
There are a number of additional areas where specific client kernel
hypervisors could be prototyped. These areas include:

21

• protecting security critical databases and servers

• ensuring that CORBA security controls are not bypassed

• enhancing audit capabilities dynamically

• providing dynamic file redo logs to support recoverability.

5.4 Conclusion
The kernel hypervisor program has successfully demonstrated the feasibility and
usefulness of using kernel loadable modules to add additional security and robustness
to an application without needing to modify either the application or the operating
system on which the application runs. Future research should now focus on
extending the framework developed on this program to other platforms and on
developing new and enhanced client kernel hypervisors to provide security,
reliability and recovery features not currently available.

22

6. References

[1] Thomas Bressoud and Fred Schneider. Hypervisor-based Fault-Tolerance.
Proceedings of the 15th ACM Symposium on Operating System Principles. December
1995. ACM Press.

[2] Terrence Mitchem, Raymond Lu, Richard O'Brien. Using Kernel Hypervisors to
Secure Applications. Proceedings of the 1997 Applied Computer Science Applications
Conference. December 1997.

[3] Secure Computing Corporation. Design Report, Hypervisors for Security and
Robustness Program, CDRL A005. Feb 1998.

[4] M. Leech, et al. RFC 1928: SOCKS Protocol Version 5. March 1996.

[5] Ian Goldberg, David Wagner, Randi Thomas and Eric Brewer. A Secure Environment
for Untrusted Helper Applications. Proceedings of the 6th USEN1X Security Symposium.
July, 1996.

[6] Bjorn Ekwall and Jacques Gelinas. Linux Modules 2.1.3 Documentation. June, 1996.
Distributed with Linux source.

[7] Secure Computing Corporation. Test Results, Hypervisors for Security and
Robustness Program, CDRL A006. Feb 1998.

[8] Secure Computing Corporation. Formal Specifications, Hypervisors for Security and
Robustness Program, CDRL A007. Feb 1998.

[9] Martin Abadi and Leslie Lamport. Conjoining Specifications. ACM Transactions on
Programming Languages and Systems 17,3. May 1995.

[10]N Shankar. A Lazy Approach to Compositional Verification. Technical Report TSL-
93-08, SRI International, December 1993.

[ll]Secure Computing Corporation. Composability for Secure Systems Refined Design
Report. February 6,1998.

[12]Secure Computing Corporation. DTOS Composability Study. February 1997.

[13]Mark Russinovich and Bryce Cogswell. Windows NT System-Call Hooking. Dr.
Dobb 's Journal, January, 1997.

23

7. Appendix: User Guide for Kernel Hypervisors

User Guide Table of Contents

24

7. APPENDIX: USER GUIDE FOR KERNEL HYPERVISORS
7.1 OVERVIEW
7.2 INSTALLATION INSTRUCTIONS AND BRIEF USAGE NOTES
7.3 LINUX COMMANDS
7.4 HYPER_BOSS 1111111111111

7.4.1 Description
7.4.2 Usage
7.4.3 Configuration
7.4.4 Known Bugs/Limitations

7.5HYPER_NS 111111111111111111111
7.5.1 Description
7.5.2 Usage
7.5.3 Configuration
7.5.4 Known Bugs/Limitations

7.6 HYPER_APACHE 113///.".'.'.'.'.'.".".'.".".'
7.6.1 Description
7.6.2 Usage
7.6.3 Configuration
7.6.4 Known Bugs/Limitations

7.7HYPER_COP 111111111111111111111
7.7.1 Description
7.7.2 Usage
7.7.3 Configuration
7.7.4 Known Bugs/Limitations

7.8 HYPER_REPLICATE 1111111'//////.
7.8.1 Description
7.8.2 Usage 11
7.8.3 Configuration
7.8.4 Known Bugs/Limitations

7.9 IMPORTANT FILES AND DIRECTORIES

25

7.1 Overview
This document is the User Guide for the set of kernel hypervisors developed by
Secure Computing Corporation to add security and robustness to the Linux operating
system and certain COTS applications. A hypervisor is a layer of software, normally
operating directly on a hardware platform, that implements the same instruction set
as that hardware. They have traditionally been used to implement virtual machines.

Kernel hypervisors are a similar concept, but are implemented on top of an operating
system kernel rather than on top of the hardware. These kernel hypervisors provide a
set of "virtual" system calls for selected system components by intercepting system
calls to perform pre-call and post-call processing. They can be used to make a
component more robust or to perform various security functions, such as application
specific fine-grained access control or auditing of kernel events.

Kernel hypervisors have a number of potential applications, including protecting user
systems from malicious active content downloaded via a Web browser and wrapping
servers and firewall services to limit possible compromises. To illustrate the
possibilities, five hypervisors have been created for the Linux operating system;
hyper_boss, hyper_ns, hyper_apache, hyper_cop and hyperjreplicate.

Hyper_boss is the master hypervisor responsible for trapping system calls and re-
directing them to its registered client hypervisors. Hyper_boss also serves as the
device driver for /dev/hypers which allows communication between user space and
kernel space.

Hyper_ns is a wrapper for the Netscape web browser. Hyper_ns restricts Netscape
and any processes spawned by Netscape to a defined domain. This protects the
user's system from attacks by downloaded active content. Any damage is restricted
to the files and accesses listed in the hyper_ns domain.

Hyper_apache is a wrapper for the apache web server. Installing hyperjtpache will
restrict the file access of the apache web server to the defined domain and contain
any attacks through the web server. In addition, by restricting the files which make
up the content of the web site to Read Only, hyper_apache will protect the web
content from modification by the server process or any process spawned by the server
process. This may prevent attacks attempting to change the content of your web site.

Hyper_cop defines a circle of protection for one or more users. The files listed in a
user's circle are restricted from the rest of the world so that only the circle owner is
allowed the accesses defined for the circle files.

Hyper_replicate will replicate a defined file set to a second location. Once
configured, the files to be replicated (target files) are copied to the destination. Then
changes to the target files are tracked and duplicated in the destination set.

7.2 Installation Instructions and Brief Usage Notes.
a. Log in as root.
b. Make sure Linux is installed with loadable kernel modules enabled.

The Linux manual includes detailed instructions on configuring and installing
a new kernel. If needed, follow the instructions for using "make config", "make

26

menuconfig" or "make xconfig" to configure a new kernel.
For a quick check if kernel modules are enabled, run the command "/sbin/lsmod"
If modules are listed, you have kernel modules and should not have to reconfigure
the kernel. If no modules are listed, you may have to re-configure.

c. Copy the hypervisor tar file to the /home directory and expand.
cp /mnt/floppy/hypers.gz /home
tar -cvzf hypers.gz

d. Create the hypervisor device to enable communication between kernel and user space.
mknod -m 666 /dev/hyper c 42 0

e. Copy default configuration files to /etc/hypervisor
cp /home/hypervisor/configs /etc/hypervisor

e. Change to the directory containing the compiled modules and configuration programs.
cd /home/hypervisor/bin

f. Install the master hypervisor.
insmod hyper_boss

g. Install desired client hypervisors. They will register themselves with the master
hypervisor and be assigned a client number.

insmod hyper_ns
insmod hyper_apache
insmod hyper_cop
insmod hyper_replicate

h. Use vi, emacs, or your personal editor of choice to edit the configuration files. The
default files include instructions and examples to help create configurations appropriate
for your desired effect.
i. Use one of the client configuration applications to find out which client id was assigned
to each hypervisor.

nsctl 0
copctl 0
repctl 0

Any one of these commands will cause the master hypervisor to print out configuration
information including the assigned client ids. For example:

id = 1 name = hyper_netscape
desc = hypervisor for netscape
steal syscalls - 2 5 8 ...

id = 2 name = hyper_wrapper
desc = generic application wrapper hypervisor
steal syscalls = ...

id = 3 name = hyper_cop
• • » €LC» • *

j. Configure client hypervisors.
nsctl 1 1
nsctl 2 1 /etc/hypervisor/apache.conf
copctl 3 1
repctl 4 1

More detailed description on configuration of the client hypervisors can be found in the
following sections. The highlights are:

27

1. nsctl is used for hyper_ns and hyper_apache but it assumes hyper_ns for default
configuration. When nsctl is used for hyper_apache, the configuration file must be
specified.

2. copctl is used for hyper_cop
3. repctl is used for hyperjeplicate
4. the first parameter is the client id as reported by hyper_boss
5. usage information is listed when the control command is issued without any

parameters. This also indicates the default configuration file.

7.3 Linux Commands
Three Linux commands are used to manage the hypervisors:

/sbin/insmod "module name" — install kernel module
/sbin/rmmod "module name" — remove kernel module
/sbin/lsmod — list modules

These commands must be executed by the super user.

Always install the master hypervisor "hyper_boss" before any of the client hypervisors.
Trying to install a client hypervisor without hyper_boss present will result in error
messages from the hyperjregister, hyper_unregister and hyper_steal_syscall functions
reporting

wrong version or undefined

Always remove all client hypervisors before removing the master hypervisor. Trying to
remove hyper_boss while another hypervisor is present will result in the error message

Device or resource busy

28

7.4 hyperjioss

7.4.1 Description

A framework has been developed based on a master kernel hypervisor, hyper_boss,
whose job is to coordinate installation and removal of individual client kernel
hypervisors and to provide a means for management of these clients. The framework
allows client kernel hypervisors to be stacked so that a variety of application specific
or task specific policies can be implemented, each by means of its own kernel
hypervisor. The hypervisors run in the kernel, but since they are loadable modules
they do not require that the kernel be modified.

The master hypervisor is loaded before any other client kernel hypervisors. A special
application programming interface (API) has been defined that allows client
hypervisors to register and unregister themselves with the master hypervisor and to
identify which system calls they need to monitor. The master hypervisor keeps track
of all currently registered client hypervisors and of the particular system calls that
each client hypervisor is monitoring. When a client hypervisor module is removed
via the rmmod call, it is the responsibility of the client hypervisor to de-register itself
with the master hypervisor.

A special device, /dev/hyper, has been defined for communication between user
space and kernel hypervisors. The master hypervisor acts as the device driver for this
device. The device allows a privileged user to dynamically update the configuration
information for a kernel hypervisor, including updating the security policy that the
hypervisor enforces. It also provides a mechanism that kernel hypervisors can use to
communicate with user space daemons. Such daemons, for example, could be used to
provide additional audit capabilities or replication services.

The master hypervisor provides special wrapper code for use with any system call
that is being monitored. The actual monitoring of system calls is performed by
redirecting the links in the kernel system call table to point to system call wrappers
that the master hypervisor provides. This redirection of links is the only modification
to the kernel that is performed and is done by the master hypervisor only on system
calls being monitored. The wrapper code is invoked when the system call is made
and performs the processing illustrated in Figure 1.

Each system call has its own wrapper that follows the algorithm:

• For each client kernel hypervisor monitoring this call, initiate that client's
pre-call processing.

• Call the standard system call processing.

• For each client kernel hypervisor monitoring this call, initiate that client's
post-call processing.

29

Figure 1. System Call Processing

0 Initial System Call
0 System Call Stolen -

Preprocessing Checks Made
0 Preprocessing Checks Fall -

Return Failure
0 Preprocessing Checks Pass-

Perform System Call Processing
0 Postprocessing Done
0 Return Result of System Call

Processing and Postprocessing

JBöJPBWWS

Kernel

Pre-call and post-call processing is used to enforce the client hypervisor's particular
security policy or to initiate other actions by the client hypervisor. This processing
could include additional auditing of system calls, including call parameters and
results; performing access checks and making access decisions for controlled
resources that the hypervisor is protecting; modifying system call parameters; and
passing information to user daemons.

7.4.2 Usage
The following commands should be run from /home/hypervisor/bin.

/sbin/insmod hyper_boss to load hyper_boss
/sbin/rmmod hyper_boss to unload hyper_boss
/sbin/lsmod to list modules loaded

Hyper_boss needs to be loaded before any of the other client hypervisors.
Hyper_boss can not be unloaded until after all client hypervisors have been unloaded.

Any of the hypervisor control applications (nsctl, copctl, repctl) with first parameter 0
(zero) can be used to get a report from hyper_boss of the registered client hypervisors,
their client id, name, description and re-mapped system calls. For example, run:

/home/hypervisor/bin/nsctl 0

to get the client hypervisor report.

30

Messages are logged to the stdout terminal and to the file:
/var/log/messages

7.4.3 Configuration

The hypervisor device, /dev/hyper, must exist before nsctl, copctl or repctl can
communicate to hyper_boss. This device is created by root running the command:

mknod -m 666 /dev/hyper c 42 0

7.4.4 Known Bugs/Limitations
None.

7.5 hyper_ns

7.5.1 Description

The goal of the Netscape hypervisor is to protect a user, browsing on the Internet,
from downloading and executing malicious active content that might damage the
user s system. The Netscape hypervisor accomplishes this by monitoring system calls
made by the browser and enforcing a policy that only allows certain resources to be
accessed. In particular, the set of files that the browser can open for read and
read/write access is controlled so that the browser effectively operates within its own
limited execution context. While this does not prevent malicious code from accessing
and possibly damaging resources within this context, it does limit the damage that
could be done to only these resources.

In the case of the Netscape browser, the context includes the user's .netscape
directory as well as limited access to other libraries needed by the browser to
execute. Most files on the system, however, are not accessible to the browser and so
cannot be damaged. To ensure that applications started from the browser as the result
of a download, e.g. a postscript viewer, are also controlled, the hypervisor keeps
track of all descendants of the browser and enforces the same policy on them as on
the browser.

The security policy that the Netscape hypervisor enforces is stated as a set of rules
identifying which resources the browser is allowed to access and what permissions
the browser has to the resource. If there is no rule that allows access to a resource
then the hypervisor refuses any requests for access to that resource. The format of the
rules is:

<type> <identifier> <permissions>

where <type> is either a file, socket, or process

<identifier> is either a file/dir pathname, an IP address, or a process ID

and <permissions> depends on the type.

For our Netscape prototype, only rules for the <file> type are used. For these rules
permissions are:

31

read, write, read/write, and none.

Certain conventions are used to simplify the statement of the rules. If an <identifier>
is a file directory, then access to all files in that directory and all subdirectories is
governed by the rule for the <identiflef>, unless this rule is specifically overridden.
Rules can be overridden by stating another, more specific, rule. For example, if a rule
allows read access to all files and subdirectories of the directory /etc, then you can
prevent users from accessing the file /etc/passwd by including a rule for this file with
a permission of none.

7.5.2 Usage
The following commands should be run from /home/hypervisor/bin.

/sbin/insmod hyper_ns to load hyper_ns
/sbin/rmmod hyper_ns to unload hyper_ns
/sbin/lsmod to list modules loaded

Hyper_boss needs to be loaded before hyper_ns.

Use the hypervisor client control application, nsctl, to control and configure hyper_ns.
nsctl is located in /home/hypervisor/bin. Use:

nsctl to get a usage report showing how to use nsctl
nsctl 0 to have hyper_boss list configured client hypervisors
nsctl [id] 0 to print hyper_ns configuration

where [id] is the client id for hyper_ns as reported by hyper_boss in the
configured client hypervisors report,

nsctl [id] 1 to configure hyper_ns from the default configuration file
The default configuration file for nsctl is /etc/hypervisor/ns_acl.conf.

nsctl [id] 4 to clear all configuration
nsctl [id] 5 [log level] to set the log level.

Messages are logged to the stdout terminal and to the file:
/var/log/messages

7.5.3 Configuration
The configuration file, /etc/hypervisor/ns_acl.conf, is used with the command

nsctl [id] 1
to configure hyper_ns.

An example configuration file,
/home/hypervisor/configs/ns_acl.conf

is included with the distribution. This file's @general access control list shows the
minimum accesses needed by netscape for the web browser to run correctly. The @target

32

entry may need to be changed from /usr/local/bin/netscape to the correct path to the
netscape application.

7.5.4 Known Bugs/Limitations
None.

7.6 hyper_apache

7.6.1 Description

Both hyper_ns and hyper_apache perform the same generic function; they wrap a
specified application and restrict its access to a pre-defined domain. This concept
can be applied to any application. In fact, changing the @target entry of the
configuration file will allow either of our wrappers to watch over any application
desired.

It may have been desirable to create one generic hypervisor, let's call it
hyper_wrapper, which could be configured for whatever application needs to be
wrapped. Then one could load hyper_wrapper as many times as needed to wrap all
the desired applications. Unfortunately, the Linux system call insmod will not
install a module more than once. So we are forced to have different names for the
wrappers which handle Netscape and Apache.

Because of the insmod imposed limitation, and since we are specifically
demonstrating wrappers for just the Netscape and Apache applications, hyper_apache
was created to provide a second uniquely named hypervisor instead of creating a
generic wrapper hypervisor.

The Apache Hypervisor, hyper_apache, started as an exact copy of hyper_ns. The
only changes were to remove "netscape", "hyper_ns" and "ns" from all error
messages and logging messages. These were changed to generic "wrapper" messages.
Note that only messages were changed in making hyper_apache from hyper_ns. All
the data structures, major components and minor functions are exactly the same.

Since hyper_apache is essentially hyper_ns with generic messages, one could easily
create more wrapper hypervisors by the following steps.

• Copy hyper_apache.o to a new module name. For example, if the new
hypervisor is to wrap the ftp server, it could be called something clever like
hyper_ftp.o

• Create an appropriate configuration file with the desired target /usr/bin/ftp.
• Load and configure the new hypervisor just like hyper_ns or hyper_apache.

The only negative to having multiple hypervisors based on hyper_apache is that error
messages and logging messages will not be unique.

7.6.2 Usage

The following commands should be run from /home/hypervisor/bin.

/sbin/insmod hyper_apache to load

33

/sbin/rmmod hyper_apache to unload
/sbin/lsmod to list modules loaded

Hyper_boss needs to be loaded before hyper_apache.

Since hyper_apache is just a more generic copy of hyper_ns, the same client control
application, nsctl is used to control and configure hyper_apache or any other generic
wrapper created from renaming hyper_apache. One just needs to make sure the correct
configuration file is specified.

nsctl is located in /home/hypervisor/bin. Use:

nsctl to get a usage report showing how to use nsctl
nsctl 0 to have hyper_boss list configured client hypervisors

hyper_apache and any other generic application wrapper hypervisor created by
copying hyper_apache will be listed as "hyper_wrapper" by hyper_boss. If more
than one wrapper is loaded, it is important to note the order they were loaded to
match the client id with the desired hypervisor.

nsctl [id] 0 to print client hypervisor configuration.
where [id] is the client id for the wrapper hypervisor as reported by hyper_boss in
the configured client hypervisors report.

nsctl [id] 1 /etc/hypervisor/apache.conf to configure from the specified file,
the default configuration file for nsctl is /etc/hypervisor/ns_acl.conf so it is
important to specify the configuration file for hyper_apache and any other
generic wrapper hypervisors.

nsctl [id] 4 to clear all configuration
nsctl [id] 5 [log level] to set the log level.

• Messages are logged to the stdout terminal and to the file:
/var/log/messages

7.6.3 Configuration
The configuration file, /etc/hypervisor/apache.conf, is used with the command

nsctl [id] 1 /etc/hypervisor/apache.conf

to configure hyper_apache.

An example configuration file,
/home/hypervisor/configs/apache.conf

is included with the distribution. This file's @general access control list shows the
minimum accesses needed by apache for the web server to run correctly. The @target
entry may need to be changed from /usr/sbin/httpd if your system has httpd in a different
location.

34

7.6.4 Known Bugs/Limitations

hyper_apache must be running before the apache server daemon, httpd is started. Since
httpd is normally started up by the script S85httpd in /etc/rc.d/rc3.d before login is
enabled, the user has three options.
• One, create a script, say S84hypers, to install hyper_boss and hyper_apache before

S85httpd is started.
• Two, stop httpd with the command /etc/rc.d/rc3.d/S85httpd stop, start the hypervisors,

then restart httpd with /etc/rc.d/rc3.d/S85httpd start.
• Three, remove S85httpd from the normal startup and run it manually after

hyper_apache is installed.

In any case, for hyper_apache to trap the httpd process, you must make sure it is started
before the first httpd is installed.

7.7 hyper_cop

7.7.1 Description

The Circle of Protection hypervisor, or hyper_cop, is a loadable kernel module and a
client of the master hypervisor. The goal of hyper_cop is to restrict access to files
which are listed as belonging to a specific user's Circle of Protection.

Much like hyper_ns, hyper_cop reads in an access control list which specifies files
and accesses. However, with hyper_cop, there is no general access control list or a
target application. There is no target application because hyper_cop does not protect
files against access by a particular process but it controls all access to its protected
files regardless of who or what application is requesting the access. There is no
general access control list because adding a file to a circle is telling hyper_cop that
the defined access is reserved for a specified user, so a user must be supplied. In
fact, each listed file must belong to one and only one user's circle of protection.

The access associated with a file in a user's circle is interpreted as the access
reserved for the circle owner. For example, an access of W (for write) specifies the
owner of the circle reserves Write access to the file. All other users are allowed to
Read but not Write. Reserving RW removes all Read and Write from general users
and only the circle's owner is allowed any access.

In this way, a set of files can be restricted from general access while still being
allowed access to a specified privileged user. This is more protective than the
standard UNIX file control since even "root" will not be allowed access to protected
files. To further protect the files from the super user, hyper_cop also watches for the
Set User Id, (setuid) command and does not allow switching to a user who has a
circle of protection configured. So even with root access, the super user will have to
logout, log back in as the circle's owner and provide the correct password before
access to the files is allowed. Eliminating setuid for circle owners forces users to
authenticate themselves before being able to access circle files.

Note: A malicious user with root access could still change the password for a circle
owner, then log in with the new password to gain access. To prevent this, a special user

35

could add /etc/passwd to their circle with Write access reserved. Then root would no
longer be able to change passwords.

7.7.2 Usage
The following commands should be run from /home/hypervisor/bin.

/sbin/insmod hyper_cop to load
/sbin/rmmod hyper_cop to unload
/sbin/lsmod to list modules loaded

Hyper_boss needs to be loaded before hyper_cop.

copctl is located in /home/hypervisor/bin. Use:

copctl to get a usage report showing how to use copctl
copctl 0 to have hyper_boss list configured client hypervisors
copctl [id] 0 to print circle of protection hypervisor configuration.

where [id] is the client id for the hyper_cop as reported by hyper_boss in the
configured client hypervisors report,

copctl [id] 1 to configure hyper_cop from the default config file.
The default configuration file for copctl is /etc/hypervisor/cop_acl.conf.

copctl [id] 4 to clear all configuration
copctl [id] 5 [log level] to set the log level.

Messages are logged to the stdout terminal and to the file:
/var/log/messages

7.7.3 Configuration
The configuration file, /etc/hypervisor/cop_acl.conf, is used with the command

copctl [id] 1
to configure hyper_cop.

An example configuration file,
/home/hypervisor/configs/cop_acl.conf

is included with the distribution. This file shows how hyper_cop may be used to control
access to the apache web server content All users are still allowed Read access to the
web content files but only a special user (the web master) is allowed to Write the files.
You must change the @user name to an appropriate user or create a new user to match
the one listed in copjacl.conf.

Protecting the web content is just one of may uses for hyper_cop. Any set of files can be
configured as belonging to a specified user's circle of protection. These files will then be
protected from access by all other users even the super user.

36

Multiple circles can be configured for multiple users. Just remember to include a file in
at most one user's circle for proper processing.

7.7.4 Known Bugs/Limitations
a. This implementation of hyper_cop is sufficient to show proof of concept but it is a bit
weak on protection. Hyper_cop is configured by reading in and storing a list of filenames
to protect, which it checks each time an open() call is encountered. The filename being
opened is checked against the list and an access decision is made. Unfortunately, relying
on filename string comparisons is a very inaccurate way to identify files. To circumvent
the protection, a user simply needs to access the file by a different name than the name
being protected by hyper_cop. This can be accomplished by many methods including
accessing the file through a symbolic link, through the /proc directory structure or simply
by giving a relative path and name instead of the full name of the file. For example,
while /home/httpd/index.html may be known to hyper_cop as a file to protect, open()
calls on /home/httpd/linktoindex.html, /proc/144/cwd/index.html, or 7index.html can not
immediately be identified as the file to protect.

b. A file can exist in at most one user's circle. This is a rule assumed by the access logic
of hyper_cop but is not enforced during configuration. If a file is listed in more that one
user's circle, access control will not be properly enforced.

c. Files within a protected directory can still be deleted with "rm".

7.8 hyper_replicate

7.8.1 Description
The replication hypervisor is used to transparently replicate a file or set of files. The
objective is to provide a replication facility that allows immediate backup of changes
to a file without having to modify any applications that are making the actual
changes.

The replication hypervisor monitors all system calls that modify files. It looks for
calls that modify any of the files being replicated. When such a call is identified, the
hypervisor caches the input parameters and allows the call to continue execution. If
execution of the call completes successfully, then the hypervisor sends the cached
input parameters to a replication daemon, operating in user space, that replays the
call with the cached parameters on the copy of the file that it is maintaining.

Files can be replicated via this method either locally or across the network (using NFS).

7.8.2 Usage
The following commands should be run from /home/hypervisor/bin.

/sbin/insmod hyper_replicate to load
/sbin/rmmod hyperjeplicate to unload
/sbin/lsmod to list modules loaded

37

Hyper_boss needs to be loaded before hyperjeplicate.

repctl is located in /home/hypervisor/bin. Use:

repctl to get a usage report showing how to use repctl
repctl 0 to have hyper_boss list configured client hypervisors
repctl [id] 0 to print replication hypervisor configuration.

where [id] is the client id for hyper_replicate as reported by hyper_boss in the
configured client hypervisors report. Note that a copy of repctl needs to be
running in active replication mode for this command to show anything but
"empty" for the monitored files,

repctl [id] 1 to configure hyperjeplicate from the default config file.
start replication and install the replicate deamon to service
messages for modification of the replicated files.

The default configuration file for repctl is /etc/hypervisor/replicate.conf.
repctl [id] 1 & to config and run the replicate deamon in the background.

The default configuration file for repctl is /etc/hypervisor/replicate.conf.
Note the process id when running in the background so you can kill it if desired,

kill [pid] to remove the replication deamon if running in background,
repctl [id] [debug level] to set the debug level

Messages are logged to the stdout terminal and to the files:
/var/log/messages
/var/log/hypervisor/replicate

Note: the directory /var/log/hypervisor needs to be created with writing allowed before
repctl [id] 1 is run.

7.8.3 Configuration
The configuration file, /etc/hypervisor/replicate.conf, is used with the command

repctl [id] 1 &
to configure hyperjeplicate.

An example configuration file,
/home/hypervisor/configs/replicate.conf

is included with the distribution.

7.8.4 Known Bugs/Limitations
a. As with hyper_cop, hyperjeplicate does not get the full pathname when a file is
opened. Thus when a file is accessed by an application without using the full path,
hyperjeplicate does not recognize the file as one to replicate and replication will fail.

38

b. Since hyper_boss opens /var/log/messages when loaded and since hyper_boss is loaded
before hyperjeplicate, hyper_replicate will never trap the opening of/var/log/messages
and will not replicate that file correctly.

7.9 Important Files and Directories
The following files and directories are used by the hypervisors for configuration files, log
files, binary executables, source, etc.

• dir: /home/hypervisor

Default home directory for the hypervisor source and executable files.
• dir: /home/hypervisor/bin

Default location of the hypervisor modules and hypervisor client manager
applications. The modules found here are:
hyper_boss.o: master hypervisor
hyper_ns.o: netscape hypervisor

hyper_apache.o: generic hypervisor used to wrap the Apache server
hyper_cop.o: Circle of Protection hypervisor.
hyper_replicate.o: replication hypervisor.
The client manager applications found here are:

nsctl: to control hyper_ns and hyper_apache.
copctl: to control hyper_cop.
repctl: to control hyper_replicate.

• dir: /home/hypervisor/modules

Default location of the hypervisor source code. Includes all source for all
hypervisors and client manager applications.

• dir: /etc/hypervisor/

Default location of the configuration files. The user may specify a new file
name and location while configuring a hypervisor, but each client manager
application has a default file which is loaded unless specifically changed.
The default files are:

ns_acl.conf: Default configuration file for hyper_ns and nscü.
apache.conf: Default configuration file for hyper_apache. Since

nsctl is used to configure hyper_apache, and since
the default file for nsctl is "ns_acl.conf', the user

must specify /etc/hypervisor/apache_acl.conf when
configuring hyper_apache.

cop_acl.conf: Default configuration file for hyper_cop and copctl.
replicate.conf: Default configuration file for hyper_replicate and

repctl.
• file: /var/log/messages

39

Logging file for hyper_boss, hyper_ns, hyper_apache and hyper_cop.
file: /var/log/hypervisor/replicate

Logging file for hyper_replicate and the repctl deamon.

file: /dev/hyper
The device used for communication between user space and the kernel
hypervisors. This device must exist to allow nsctl, copctl and repctl to talk
to their hypervisors in kernel space. This device is created with the
following command run by root: mknod -m 666 /dev/hyper c 42
0

40

DISTRIBUTION LIST

addresses

AFRL/IFGB
OWAYNE P. ÄLLAIN
525 BROOKS RO
ROME NY 13441

SECURE COMPUTING CORP
2675 LONG LAKE RD
ROSEVILLE, MN 55113

AFRL/IFQIL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROMS NY 13441-4514

number
of capie:

ATTENTION: OTIC-DCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE
FT. 3ELV0IR, VA 22060-6218

0944

DEFENSE ADVANCED RESEARCH
PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

RELIABILITY ANALYSIS
201 MILL ST.
ROME NY 13440-3200

CENTER

ATTN: GWEN NGUYEN
GIOEP
P.O. 30X 3000
CORONA CA 91718-8000

AFIT ACADEMIC LIBRARY/LDEE
2950 P STREET
AREA 3, SLOG 642
WRIGHT-PATTERSON AFB OH 45433-7765

DL-1

ATTN: TECHNICAL DOCUMENTS CENTER
QL AL HSC/HRG
2698 G STREET
WRIGHT-PATTERSON AFB OH 45433-7604

US ARMY SSOC
P.O. aOX 1500
ATTN: CSSO-IM-PA
HUNTSVILLE AL 35307-3801

NAVAL AIR WARFARE CENTER
WEAPONS DIVISION
CODE 43L00QD
1 ADMINISTRATION CIRCLE
CHINA LAKE CA 93555-6100

SPACE £ NAVAL WARFARE SYSTEMS CMD
ATTN: PMW163-1 (R. SKIANO)RM 1044A
53560 HULL ST.
SAN DIEGO, CA 92152-5002

COMMANDER, SPACE I NAVAL WARFARE
SYSTEMS COMMAND CCOOE 32)
2451 CRYSTAL DRIVE
ARLINGTON VA 22245-5200

COR, US ARMY MISSILE COMMAND
REDSTONE SCIENTIFIC INFORMATION CTR
ATTN: AMSMI-RD-CS-R, DOCS
REDSTONE ARSENAL AL 35398-5241

ADVISORY GROUP ON ELECTRON DEVICES
SUITE 500
1745 JEFFERSON DAVIS HIGHWAY
ARLINGTON VA 22202

REPORT COLLECTION, CIC-14
MS P364
LOS ALAMOS NATIONAL LA3CRAT0RY
LOS ALAMOS NM 87545

AEDC LIBRARY
TECHNICAL REPORTS FILE
100 KINDEL DRIVE, SUITE C211
ARNOLD AFB TN 37389-3211

DL-2

COMMANDER
USAISC
ASHC-IMQ-L,
FT HUACHUCA

3LDG 61301
AZ 35613-5000

US DEPT OF TRANSPORTATION LIBRARY
F810A, M-457, RM 930
800 INDEPENDENCE AVE, SW
WASH OC 22591

AIR FORCE WEATHER TECHNICAL LIBRARY
151 PATTON AVE. RM 120
ASHEVILLF NC 28801-5002

AFIWC/MSY
102 HALL BLVD,
SAN ANTONIO TX

STE 315
78243-7016

SOFTWARE ENGINEERING INSTITUTE
CARNEGIE MELLON UNIVERSITY
4500 FIFTH AVENUE
PITTSBURGH PA 15213

NSA/CSS
Kl
FT MEADE MO 20755-6000

ATTN: OM CHAUHAN
DCMC WICHITA
271 WEST THIRO STREET NORTH
SUITE 6000
WICHITA KS 67202-1212

AFRL/VSOS-TL CLI3RARY)
5 WRIGHT STREET
HANSCOM AFB MA 01731-3004

ATTN: EILEEN LAOUKE/0460
MITRE CORPORATION
202 BURLINGTON RO
BEDFORD MA 01730

DL-3

OUSOCPVOTSA/DUTD
ATTN: PATRICK 6. SULLIVAN,
400 ARMY NAVY DRIVE
SUITE 300
ARLINGTON VA 22202

JR

DL-4-

MISSION
OF

AFRL/INFORMATION DIRECTORATE (IF)

The advancement and application of information systems science and

technology for aerospace command and control and its transition to air,

space, and ground systems to meet customer needs in the areas of Global

Awareness, Dynamic Planning and Execution, and Global Information

Exchange is the focus of this AFRL organization. The directorate's areas

of investigation include a broad spectrum of information and fusion,

communication, collaborative environment and modeling and simulation,

defensive information warfare, and intelligent information systems

technologies.

